本文共 1267 字,大约阅读时间需要 4 分钟。
在现实的生活中,我们可能会遇到一些美好的或是珍贵的图片被噪声干扰,比如旧照片的折痕,比如镜头上的灰尘或污渍,更或者是某些我们想为我所用但有讨厌水印,那么有没有一种办法可以消除这些噪声呢?
答案是肯定的,依然是被我们用了无数次的OpenCV这款优秀的框架。
那OpenCV究竟是怎么实现的,简单的来说就是开发者标定噪声的特征,在使用噪声周围的颜色特征推理出应该修复的图片的颜色,从而实现图片修复的。
#coding=utf-8#图片修复import cv2import numpy as nppath = "img/inpaint.png"img = cv2.imread(path)hight, width, depth = img.shape[0:3]#图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255]))#创建形状和尺寸的结构元素kernel = np.ones((3, 3), np.uint8)#扩张待修复区域hi_mask = cv2.dilate(thresh, kernel, iterations=1)specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA)cv2.namedWindow("Image", 0)cv2.resizeWindow("Image", int(width / 2), int(hight / 2))cv2.imshow("Image", img)cv2.namedWindow("newImage", 0)cv2.resizeWindow("newImage", int(width / 2), int(hight / 2))cv2.imshow("newImage", specular)cv2.waitKey(0)cv2.destroyAllWindows()
图片扩展与腐蚀更多资料:
作者: 出处: 本文版权归作者和博客园共有,欢迎转载,请标明出处。